A barcode is a really simple idea: give every item that you want to classify its own, unique number and then simply print the number on the item so an electronic scanning device can read it. We could simply print the number itself, but the trouble with decimal numbers is that they're easy to confuse (a misprinted eight could look like a three to a computer, while six is identical to nine if you turn it upside down—which could cause all sorts of chaos at the checkout if you scanned your cornflakes the wrong way up). What we really need is a completely reliable way of printing numbers so that they can be read very accurately at high speeds. That's the problem that barcodes solve.
Photo: Each digit in a barcode is represented by seven equal-sized vertical blocks. These are colored in either black or white to represent the decimal numbers 0–9. Every number ultimately consists of four fat or thin black and white stripes and its pattern is designed so that, even if you turn it upside down, it can't be confused with any other number.
If you look at a barcode, you probably can't make head or tail of it: you don't know where one number ends and another one begins. But it's simple really. Each digit in the product number is given the same amount of horizontal space: exactly 7 units. Then, to represent any of the numbers from zero through nine, we simply color those seven units with a different pattern of black and white stripes. Thus, the number one is represented by coloring in two white stripes, two black stripes, two white stripes, and one black stripe, while the number two is represented by two white stripes, one black stripe, two white stripes, and two final black stripes.
You've probably noticed that barcodes can be quite long and that's because they have to represent three different types of information. The first part of a barcode tells you the country where it was issued. The next part reveals the manufacturer of the product. The final part of the barcode identifies the product itself. Different types of the same basic product (for example, four-packs of Coca-Cola bottles and six-packs of Coca-Cola cans) have totally different barcode numbers.
Most products carry a simple barcode known as the UPC (universal product code)—a line of vertical stripes with a set of numbers printed underneath it (so someone can manually key in the product number if the barcode is misprinted or damaged in the store and won't scan through the barcode reader). There is another kind of barcode that is becoming increasingly common and its stores much more information. It's called a 2D (two-dimensional) barcode) and you sometimes see it on things like self-printed postage stamps.
Scanning head shines LED or laser light onto barcode.
Light reflects back off barcode into a light-detecting electronic component called a photoelectric cell. White areas of the barcode reflect most light; black areas reflect least.
As the scanner moves past the barcode, the cell generates a pattern of on-off pulses that correspond to the black and white stripes. So for the code shown here ("black black black white black white black black"), the cell would be "off off off on off on off off."
An electronic circuit attached to the scanner converts these on-off pulses into binary digits (zeros and ones).
The binary digits are sent to a computer attached to the scanner, which detects the code as 11101011.