If you've ever watched a jet plane taking off or coming in to land, the first thing you'll have noticed is the noise of the engines. Jet engines, which are long metal tubes burning a continuous rush of fuel and air, are far noisier (and far more powerful) than traditional propeller engines. You might think engines are the key to making a plane fly, but you'd be wrong. Things can fly quite happily without engines, as gliders (planes with no engines), paper planes, and indeed gliding birds readily show us.
If you're trying to understand how planes fly, you need to be clear about the difference between the engines and the wings and the different jobs they do. A plane's engines are designed to move it forward at high speed. That makes air flow rapidly over the wings, which throw the air down toward the ground, generating an upward force called lift that overcomes the plane's weight and holds it in the sky. So it's the engines that move a plane forward, while the wings move it upward.
Photo: Four forces act on a plane in flight. When the plane flies horizontally at a steady speed, lift from the wings exactly balances the plane's weight and the thrust exactly balances the drag. However, during takeoff, or when the plane is attempting to climb in the sky (as shown here), the thrust from the engines pushing the plane forward exceeds the drag (air resistance) pulling it back. This creates a lift force, greater than the plane's weight, which powers the plane higher into the sky. Photo by Nathanael Callon courtesy of US Air Force.
Wings make lift by changing the direction and pressure of the air that crashes into them as the engines shoot them through the sky.
Okay, so the wings are the key to making something fly—but how do they work? Most airplane wings have a curved upper surface and a flatter lower surface, making a cross-sectional shape called an airfoil.
Photo: An airfoil wing typically has a curved upper surface and a flat lower surface. This is the wing on NASA's solar-powered Centurion plane. Photo by Tom Tschida courtesy of NASA Armstrong Flight Research Center.
As a curved airfoil wing flies through the sky, it deflects air and alters the air pressure above and below it. That's intuitively obvious. Think how it feels when you slowly walk through a swimming pool and feel the force of the water pushing against your body: your body is diverting the flow of water as it pushes through it, and an airfoil wing does the same thing (much more dramatically—because that's what it's designed to do). As a plane flies forward, the curved upper part of the wing lowers the air pressure directly above it, so it moves upward.
Why does this happen? As air flows over the curved upper surface, its natural inclination is to move in a straight line, but the curve of the wing pulls it around and back down. For this reason, the air is effectively stretched out into a bigger volume—the same number of air molecules forced to occupy more space—and this is what lowers its pressure. For exactly the opposite reason, the pressure of the air under the wing increases: the advancing wing squashes the air molecules in front of it into a smaller space. The difference in air pressure between the upper and lower surfaces causes a big difference in air speed (not the other way around, as in the traditional theory of a wing). The difference in speed (observed in actual wind tunnel experiments) is much bigger than you'd predict from the simple (equal transit) theory. So if our two air molecules separate at the front, the one going over the top arrives at the tail end of the wing much faster than the one going under the bottom. No matter when they arrive, both of those molecules will be speeding downward—and this helps to produce lift in a second important way.
How airfoil wings generate lift#1: An airfoil splits apart the incoming air, lowers the pressure of the upper air stream, and accelerates both air streams downward. As the air accelerates downward, the wing (and the plane) move upward. The more an airfoil diverts the path of the oncoming air, the more lift it generates.